11 FOURTH AVENUE LOT 26 BLOCK 2 SECTION 66.30 VILLAGE OF NYACK ROCKLAND COUNTY, NY

August 12, 2025

COLLAZUOL ENGINEERING AND SURVEYING ASSOCIATES, LLC PROFESSIONAL ENGINEERS & LAND SURVEYORS

1610 CENTER AVENUE FORT LEE, NJ 07024 201-944-7774 120 1/2 NO. BROADWAY NYACK, NY 10960 845-358-1510

teven J. Collazuol

PROFESSIONAL ENGINEER & LAND SURVEYOR N.Y. LICENSE NO. 70,688

INTRODUCTION

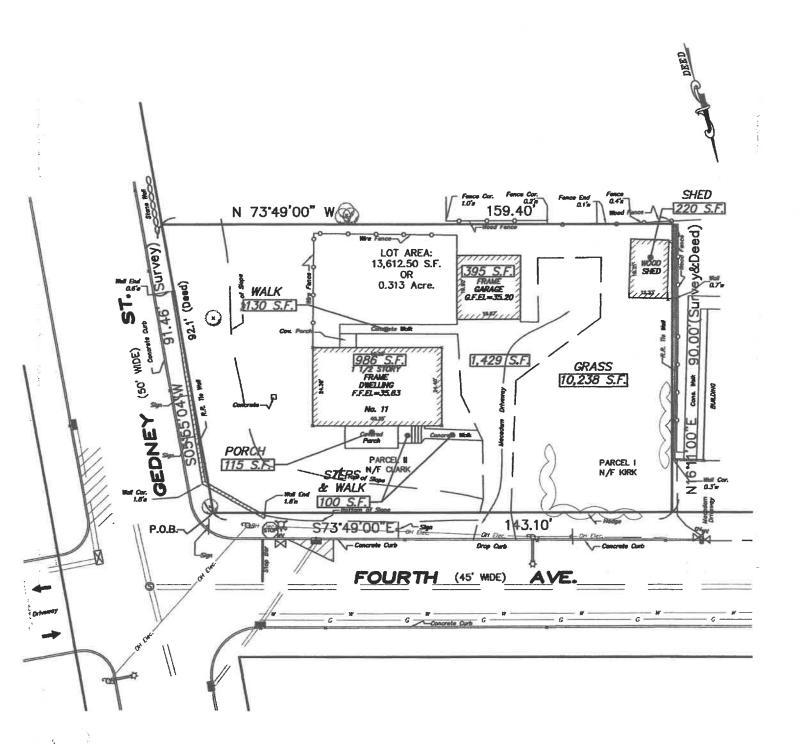
THE FOLLOWING CALCULATIONS UTILIZE THE MODIFIED RATIONAL METHOD TO DETERMINE THE EXISTING RATE OF STORM-WATER RUNOFF AS PER 100 YEAR, 10 YEAR, AND 2 YEAR STORM EVENT. THE RAINFALL INTENSITIES WERE OBTAINED FROM FIGURE 1 RAINFALL INTENSITY CURVES FOR ROCKLAND COUNTY, NEW YORK.

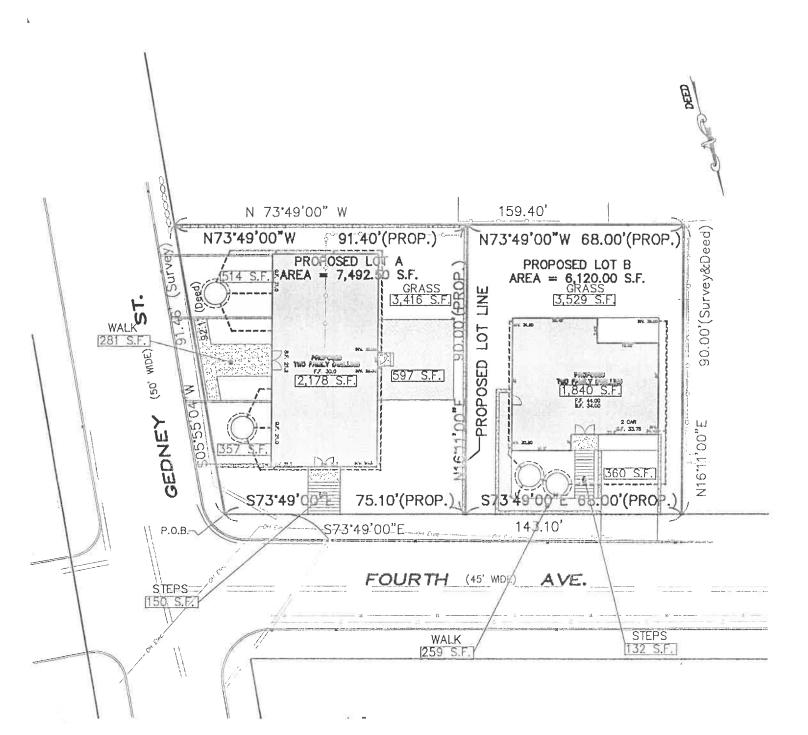
EXISTING CONDITIONS

THE EXISTING SITE IS LOCATED AT CORNER OF FOURTH AVENUE AND GEDNEY STREET IN THE VILLAGE OF NYACK, NY. THE SITE CURRENTLY CONTAINS A DWELLING, DRIVEWAY, GARAGE AND SHED.

PROPOSED DEVELOPMENT

THE PROPOSED DEVELOPMENT OF THE SITE WILL INCLUDE IMPROVEMENTS FOR THE CONSTRUCTION OF (2) TWO FAMILY DWELLINGS. PEDESTRIAN AND VEHICULAR ACCESS WILL BE FROM FOURTH AVENUE AND GEDNEY STREET.


PROPOSED STORMWATER MANAGEMENT


THE PROPOSED STORMWATER MANAGEMENT SYSTEM WILL CONSIST OF SEEPAGE PITS TO CONTAIN ALL THE ROOF RUNOFF FROM THE PROPOSED DWELLINGS.

MODIFIED RATIONAL METHOD PER R.S.I.S.

EXISTING CONDITIONS

I. AREAS				RUNOFF COEFFICIENT c
EX. DWELLING, GARAGE, CONC. WALK & STEPS MACADAM DRIVEWAY	& SHED	1,716 230 1,429	SF SF SF	0.95 0.95 0.95
GRASS& BRUSH		10,238		0.35
TOTAL	=	13,613 0.313	SF AC	
II. DRAINAGE AREA CHAR	ACTERISTICS			
DRAINAGE AREA, A		0.313	AC	
TIME OF CONCENTRATION RAINFALL INTENSITY, i100 RAINFALL INTENSITY, i100 RAINFALL INTENSITY, i20 c (weighted)	-	10 8.0 5.3 3.6 0.50	MIN IN/HR IN/HR IN/HR	
te Pille A				
III. EXISTING RUNOFF				
100 year storm (cfs) 10 year storm (cfs)	Q = ciA = Q = ciA = Q = ciA =	1.25 0.83 0.56		

MODIFIED RATIONAL METHOD PER R.S.I.S.

PROPOSED CONDITIONS

I. AREAS				RUNOFF COEFFICIENT C
IMPERVIOUS AREAS (BUILDING,PATIO, STEPS,WALKS, & DRIVEWAYS)	,	6,668	SF	0.95
GRASSED		6,945 13,613	SF	0.35
101712	=	0.313	AC	
II. DRAINAGE AREA CHARACTER	RISTICS			
DRAINAGE AREA, A		0.313	AC	
TIME OF CONCENTRATION, To RAINFALL INTENSITY, i100 RAINFALL INTENSITY, i10 RAINFALL INTENSITY, i2 c (weighted)		10 8.0 5.3 3.6 0.64	MIN IN/HR IN/HR IN/HR	

4 3 .4 1 7

MODIFIED RATIONAL METHOD PER R.S.I.S.

III. PROPOSED RUNOFF

100 Year Storm	Q = ciA	DURATION (MIN) 10	INTENSITY (IN/HR) 8.0	C * AREA (ACRES) 0.201	FLOW (CFS) 1.61
10 Year Storm	Q = ciA	DURATION (MIN) 10	INTENSITY (IN/HR) 5.3	C * AREA (ACRES) 0.201	FLOW (CFS) 1.07
2 Year Storm	Q = ciA	DURATION (MIN) 10	INTENSITY (IN/HR) 3.6	C * AREA (ACRES) 0.201	FLOW (CFS) 0.72

MODIFIED RATIONAL METHOD PER R.S.I.S.

IV. STORAGE DURATION VALUES

100 Year Storm STORM DURATION (MIN) 10	PROPOSED FLOW Q (CFS) 1.61	EXISTING FLOW Q (CFS) 1.25	RUNOFF VOLUME (CF) 966	RELEASED VOLUME (CF) 748	REQUIRED STORAGE VOLUME (CF) 218
10 Year Storm STORM DURATION (MIN) 10	PROPOSED FLOW Q (CFS) 1.07	EXISTING FLOW Q (CFS) 0.83	RUNOFF VOLUME (CF) 640	RELEASED VOLUME (CF) 496	REQUIRED STORAGE VOLUME (CF) 144
2 Year Storm STORM DURATION (MIN) 10	PROPOSED FLOW Q (CFS) 0.72	EXISTING FLOW Q (CFS) 0.56	RUNOFF VOLUME (CF) 435	RELEASED VOLUME (CF) 337	REQUIRED STORAGE VOLUME (CF) 98

MINIMUM REQUIRED STORAGE VOLUME

=

218 cf 1629 gal

PROVIDED (4) SEEPAGE PITS WITH A CAPACITY OF 5,158 GALLONS FOR PROPOSED LOTS A & B

MODIFIED RATIONAL METHOD PER R.S.I.S.

SUPPLEMENTAL CALCULATIONS PROPOSED LOT A

Note: The following calculations utilize the modified rational method to determine the required storage volume. The design is based on a 60 minute duration, 10 year storm frequency.

I. PROPOSED AREAS DRAINING TO SEEPAGE PITS (BUILDING ROOFTOP) PROPOSED LOT A RUNOFF COEFFICIENT c

			11	ONOT COLL !!
IMPERVIOUS		2,178	SF	0.95
TOTAL	=	2,178 0.050	SF AC	

II. DRAINAGE AREA CHARACTERISTICS

DRAINAGE AREA TIME OF CONCENTRATION, To RAINFALL INTENSITY, i10	0.050 60 2.1	AC MIN IN/HR
RUNOFF COEFFICIENT COMP., c	0.95	

III. PROPOSED RUNOFF

10 Year Storm	Q = ciA	DURATION (MIN) 60	INTENSITY (IN/HR) 2.1	C * AREA (ACRES) 0.048	FLOW (CFS) 0.10
---------------	---------	-------------------------	-----------------------------	------------------------------	-----------------------

MODIFIED RATIONAL METHOD PER R.S.I.S.

IV. STORAGE DURATION VALUES

10 Year Storm STORM DURATION (MIN) 60	PROPOSED FLOW Q (CFS) 0.10	EXISTING FLOW Q (CFS) 0.00	RUNOFF VOLUME (CF) 359	RELEASED VOLUME (CF) 0	REQUIRED STORAGE VOLUME (CF) 359
MAXIMUM REQUIRED STORAG	E VOLUME	=	359 2,686	cf gal	
V. SEEPAGE PIT VOLUME PROVIDED					
HEIGHT OF PIT = OUTSIDE DIAMETER OF PIT = INSIDE DIAMETER OF PIT= CAPACITY OF SEEPAGE PIT =	4 7 6.00 846	ft. ft. ft. gal.			
WIDTH OF STONE AROUND PIT = VOID RATIO = VOLUME OF STONE VOIDS =	1 0.4 40.21 301	ft. cf gal.			
DEPTH OF STONE BELOW PIT VOID RATIO = VOLUME OF STONE VOIDS =	1.5 0.4 38.17 286	ft. cf gal.			
TOTAL VOLUME / PIT =	1433	gal.			

NUMBER OF PITS REQUIRED = REQUIRED STORAGE VOLUME / TOTAL VOLUME OF PIT

= 1.9

NUMBER OF PITS PROVIDED = 2

MODIFIED RATIONAL METHOD PER R.S.I.S.

SUPPLEMENTAL CALCULATIONS PROPOSED LOT B

Note: The following calculations utilize the modified rational method to determine the required storage volume. The design is based on a 60 minute duration, 10 year storm frequency.

I. PROPOSED AREAS DRAINING TO SEEPAGE PITS (BUILDING ROOFTOP) PROPOSED LOT B RUNOFF COEFFICIENT c

BUILDING ROOF		1,840	SF	0.95
		81		
TOTAL	=	1,840 0.042	SF AC	

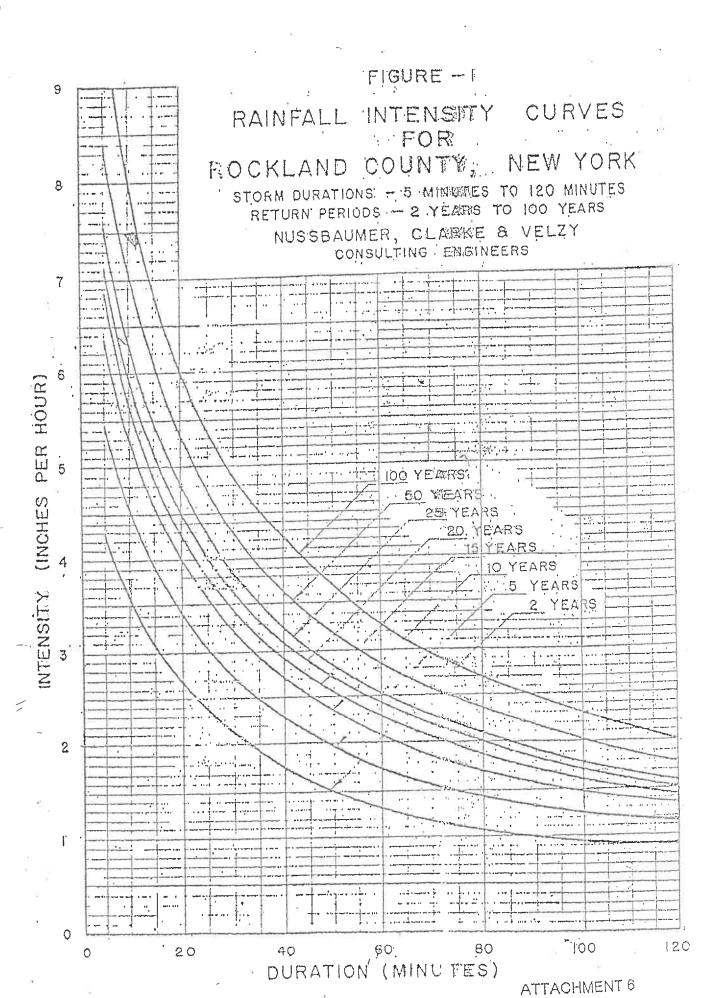
II. DRAINAGE AREA CHARACTERISTICS

DRAINAGE AREA	0.042	AC
TIME OF CONCENTRATION, To	60	MIN
RAINFALL INTENSITY, i10	2.1	IN/HR
RUNOFF COEFFICIENT COMP., c	0.95	

III. PROPOSED RUNOFF

10 Year Storm	Q = ciA	DURATION	INTENSITY	C * AREA	FLOW
10 1001 0001		(MIN)	(IN/HR)	(ACRES)	(CFS)
		60	2.1	0.040	0.08

MODIFIED RATIONAL METHOD PER R.S.I.S.


IV. STORAGE DURATION VALUES

10 Year Storm STORM DURATION (MIN) 60	PROPOSED FLOW Q (CFS) 0.08	EXISTING FLOW Q (CFS) 0.00	RUNOFF VOLUME (CF) 303	RELEASED VOLUME (CF) 0	REQUIRED STORAGE VOLUME (CF) 303
MAXIMUM REQUIRED STORAG	GE VOLUME	:: ::	303 2,269	3 cf 9 gal	
V. SEEPAGE PIT VOLUME PROVIDED					
HEIGHT OF PIT = OUTSIDE DIAMETER OF PIT = INSIDE DIAMETER OF PIT= CAPACITY OF SEEPAGE PIT =	3 7 6.00 634	ft. ft. ft. gal.			
WIDTH OF STONE AROUND PIT = VOID RATIO = VOLUME OF STONE VOIDS =	1 0.4 30.16 226	ft. cf gal.			
DEPTH OF STONE BELOW PIT VOID RATIO = VOLUME OF STONE VOIDS = =	1.5 0.4 38.17 286	ft. cf gal.			
TOTAL VOLUME / PIT =	1146	gal.			

NUMBER OF PITS REQUIRED = REQUIRED STORAGE VOLUME / TOTAL VOLUME OF PIT

= 2

NUMBER OF PITS PROVIDED = 2

